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Abstract. An investigation into the impact of the maximum Normalized
Di� erence Vegetation Index (NDVI) and the maximum surface temperature (Ts)
compositing procedures (MaN and MaT respectively) upon retrieved NDVI and
Ts values extracted from forested areas located across eight months of cloud-
screened European AVHRR data is described. NDVI values are found to be
signi® cantly higher and generally less variable when they are extracted from MaN
rather than from MaT composites and Ts values are found to be signi® cantly
higher and generally less variable when they are extracted from MaT rather than
from MaN composites. The impact of these di� erences is illustrated within the
context of a European forest/non-forest classi® cation that uses both NDVI and
Ts data. Higher potential forest/non-forest classi® cation accuracies are found using
NDVI data extracted from the MaN composites and Ts data extracted from the
MaT composites than from any other combination of composited data. The
® ndings indicate that inappropriate selection of a compositing procedure may
have a signi® cant impact upon the subsequent application of NDVI and/or Ts data.

1. Introduction

Satellite measurements made at visible and thermal wavelengths may be used to
characterize land cover and derive biophysical parameters in support of many areas
of research including global change (Running et al. 1994). At present only the
AVHRR sensor provides data of an appropriate spatial and temporal resolution to
support studies at regional to global scales (Moody and Strahler 1994). The utility
of AVHRR data is reduced by a variety of non-constant factors that include variable
sensor response over the wide AVHRR ® eld-of-view, and cloud and atmospheric
contamination. The variable AVHRR sensor response is caused by angular sensing
and illumination variations across the image swath (Holben 1986) combined with
the anisotropy of re¯ ectance from most natural surfaces (Pinty and Verstraete 1992)
and the atmosphere (Kaufman 1989 ). Correction for these e� ects requires a
comprehensive knowledge of the surface and atmosphere bidirectional re¯ ectance
properties which are not usually available. Variable AVHRR sensor response may
also be caused by the coarsening of spatial resolution at view angles further from
nadir (Breaker 1990 ). Masking techniques are used to remove cloud contamination
but are only partially useful as they cannot reliably detect cloud at a sub-pixel level
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(e.g., Davis et al. 1993, Cihlar 1994 ) and because they produce single data images
with missing values (Moody and Strahler 1994). Atmospheric correction schemes
are used to reduce atmospheric contamination (e.g., TanreÂ et al. 1990, Vermote et al.
forthcoming) but over large areas their e� ectiveness is limited by the availability of
data quantifying the atmospheric absorbing and scattering constituents. A practical
and commonly used approach to improve the utility of AVHRR data is to apply a
compositing procedure to a time series of co-registered data. Compositing procedures
use compositing criteria that are designed to select from the time series only near-
nadir pixel measurements that have reduced cloud and atmospheric contamination.
This paper examines compositing procedures that use the maximum value of the
Normalized Di� erence Vegetation Index and the maximum value of the apparent
surface temperature as compositing criteria.

For land based studies the most commonly used compositing procedure uses the
maximum value of the Normalized Di� erence Vegetation Index (NDVI). The NDVI
is a well known spectral vegetation index de® ned as the di� erence between near-
infrared and red re¯ ectances divided by their sum (Curran 1983). The NDVI is
related in a directly proportional manner to photosynthetic activity (Sellers 1985)
and, when integrated over time, has been shown to correlate with above ground
green biomass (Tucker et al. 1981, 1985, Goward and Dye 1987, Running and
Nemani 1988). The NDVI is sensitive to atmospheric perturbations, cloud
contamination, soil background and illumination and viewing geometry (Goward
et al. 1991, Los et al. 1994, Epiphanio and Huete 1995, Liu and Huete 1995, Meyer
et al. 1995). The maximum NDVI (MaN) compositing procedure was developed in
an attempt to reduce some of these e� ects and is based on the assumption that
signal contamination will depress NDVI values. Holben (1986) demonstrated
that MaN compositing reduces cloud in¯ uences for a large range of viewing and
illumination angles and for all aerosol conditions. He also showed that maximum
NDVI values occur at near nadir viewing angles and small solar zenith angles where
angular variations in the sensor response tend to be minimized. However, re¯ ectance
anisotropy can result in the selection of a pixel with a high NDVI caused by
directional rather than atmospheric e� ects (Gutman 1987, Meyer et al. 1995) which
may cause substantial radiometric variations in composited original channel data
(D’Iorio et al. 1991). This e� ect may be exacerbated if the data are atmospherically
corrected prior to compositing. Cihlar et al. (1994 b) observed a reduced NDVI
variation with respect to view angle in atmospherically corrected data and therefore
an increased probability of selecting o� -nadir pixels using the MaN procedure.
AVHRR data composited using the maximum NDVI have been used to classify
regional to global scale vegetation cover types (Tucker et al. 1994, Justice et al. 1985,
Prince and Tucker 1986, Townshend et al. 1987, Loveland et al. 1991, DeFries and
Townshend 1994 ).

Recently, the utility of other compositing procedures for land based applications
have been investigated (Cihlar et al. 1994 a). Maximum surface temperature (Ts ) has
been suggested (Cihlar et al. 1994 a) because clouds and shadows tend to decrease
the apparent Ts in daytime satellite thermal infrared data (e.g., Cihlar 1987 ) and
because apparent Ts decreases away from nadir with increasing atmospheric path
length and thereby increased atmospheric attenuation (Wan and Dozier 1989).
However, Ts varies rapidly in space and time as a complex function of surface
properties (vegetation cover and structure, moisture status, emissivity), subsurface
properties (conductivity, speci® c heat density) and atmospheric conditions (solar
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radiation, wind speed ) (Goward et al. 1985, Goward and Hope 1989, Norman et al.
1995). Ts is related, through the surface energy balance equation, to surface moisture
availability and evapotranspiration as function of latent heat ¯ ux (e.g., Carlson et al.
1981, Taconet et al. 1986). Over bare soils Ts is highly correlated with surface
moisture content but over vegetated surfaces the relation is more complex (Carlson
et al. 1990 ). Ts is observed to be inversely proportional to the vegetation canopy
cover because of a variety of factors (Lambin and Ehrlich 1996) that include latent
heat transfer through evapotranspiration, and because of the lower heat capacity
and thermal inertia of vegetation compared to that of soil (Gates 1980, Choudhury
1989, Goward and Hope 1989). This implies that the maximum Ts compositing
procedure may preferentially select less densely vegetated pixels. However, over
sparsely vegetated surfaces, the fraction of bare soil viewed by the sensor will decrease
away from nadir, resulting in many cases in lower Ts and so a reduction in the
likelihood of an o� -nadir pixel being selected. Orbit variations in the time of satellite
overpass and changes in the local solar time across the image swath may contribute
to di� culties in interpreting satellite Ts measurements (Vogt 1995). The e� ective
emissivity viewed by the sensor depends upon the view angle as well as on the
anisotropy of the surface (Labed and Stoll 1991 ) and may result in the selection of
a pixel with a high apparent Ts caused by directional rather than by surface e� ects.
Despite these complicating factors, Cihlar et al. (1994 a) observed visually that the
maximum Ts (MaT) procedure produced NDVI composites that more closely
resembled a near-nadir cloud-free image than the MaN procedure.

This paper describes an empirical investigation into the impact of maximum
NDVI (MaN) and maximum Ts (MaT) AVHRR compositing procedures upon
retrieved NDVI and Ts values. It is expected that NDVI and Ts extracted from
composited data will be sensitive to the type of compositing procedure that is applied.
This is because the physical processes controlling NDVI and Ts are di� erent and
because NDVI and Ts are measured in di� erent parts of the electromagnetic spectrum
(re¯ ected and emitted wavelengths respectively) where atmospheric scattering and
absorption processes are very di� erent (Price 1984, Kaufman 1989). Consequently
a near-nadir atmospherically clear pixel selected using the MaN procedure may not
be selected using the MaT procedure and vice-versa. Di� erences between the values
of NDVI and between the values of Ts extracted from AVHRR data composited
using the MaN and the MaT procedures may have an impact upon those applications
that utilise composited NDVI and/or Ts data. The objective of this paper is to
establish which of these compositing procedures are most suitable for the extraction
of NDVI and Ts data over land. This is achieved by examination of the statistical
characteristics of NDVI and Ts values extracted from MaN and MaT composites
rather than by examination of the view angles and the cloud content of the
composited data.

It is di� cult to map land cover in detail at the scale of AVHRR imagery and
so this investigation is performed with respect only to forest cover types. The
investigation is performed using European coverage AVHRR data acquired over
eight months to ensure a high variability of the biophysical variables (e.g., climatic,
vegetation/ecosystem, soil/hydrology and topography) that can be expected to
in¯ uence NDVI and Ts . The AVHRR data are processed independently into eight
monthly MaN and eight monthly MaT composites. Values of NDVI and Ts are
extracted from forest and non/forest pixels located in contiguous strata that charac-
terize several di� erent ecological/climatic regions and forest types found in the
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composited data. Forest NDVI values extracted at the same locations from the MaN
and from the MaT composites are compared statistically to characterize any di� er-
ences that may be introduced by the two compositing procedures. Similarly forest
Ts values extracted from the MaN and the MaT composites are compared. The
comparisons are performed independently for each month of composited data and
for all eight months of data. To reduce the e� ects of consistently cloudy data only
cloud-free pixels are examined. In this way any di� erences observed between the
MaN and MaT compositing procedures may be inferred as being due to di� erences
between the physical processes controlling NDVI and Ts and to di� erences in the
remotely-sensed measurement of these variables. The impact of the observed di� er-
ences are illustrated within the context of a European forest/non-forest classi® cation
that utilizes NDVI and Ts data.

2. Remotely-sensed data

Daily European coverage AVHRR mosaics were selected from the data archive
of the JRC MARS (Monitoring Agriculture with Remote Sensing) project (Meyer-
Roux and Vossen 1993). In total 68 relatively cloud-free mosaics sensed from March
to October of 1993 were selected. Each mosaic has an approximate surface area of
7 8́ by 106 km2 and covers the geographical area from the Portuguese coast to central
Crete (west ± east) and from Northern Algeria to Southern Norway (south± north).

An overview of the processing chain used to produce the AVHRR mosaics
can be found in Vowles (1991). Each mosaic is composed of ® ve channels of 2779
by 2343 pixels made from between approximately three to six afternoon pass
NOAA-11 AVHRR LAC (1 1́ km pixel ) images. The 128 pixels lying at the ends of
each AVHRR scanline (describing o� -nadir view angles 48 ß ± 55 ß ) are not used because
of bidirectional re¯ ectance e� ects and the extreme coarsening of spatial resolution
found at these viewing angles. Standard radiometric calibrations are performed that
account for sensor degradation using published coe� cients (Rao and Chen 1994).
Atmospheric corrections are performed using a modi® ed version of the 5S code
(TanreÂ et al. 1990) with standard atmospheric water vapour, oxygen and ozone data.
AVHRR channel 1 (red: 0 5́8± 0 6́8 mm) and channel 2 (near-infrared: 0 7́25± 1 1́0 mm)
are converted into apparent surface re¯ ectances and AVHRR channels 4 and 5
(thermal infrared: 10 3́± 11 3́ mm and 11 5́± 12 5́ mm) are converted into brightness
temperatures. AVHRR channel 3 (3 5́5± 3 9́3 mm) is not used in this study. Surface
cover information ( land, sea, snow, cloud) are de® ned on a pixel by pixel basis by
adaptive thresholding of the image data. The cloud detection procedure utilizes four
separate methods based on the comparison of pixel values in di� erent channels and
the local gradient of the pixel values (Saunders and Kriebel 1988). The AVHRR
images making up each mosaic are geometrically corrected using an orbit model
and ground control located using a library of coastline templates (Muirhead and
Malkawi 1989). The images are resampled into Albers map projection by nearest
neighbour resampling with an output pixel dimension of 1 1́ km2. The geometric
accuracy varies in each mosaic and is found empirically to be less than one to no
more than approximately three pixels depending upon the proximity of a cloud-free
coastline. These inaccuracies will introduce mosaic coregistration errors which may
cause signi® cant compositing errors. The compositing errors will be particularly
apparent where the scene heterogeneity is high (Townshend et al. 1992) and in
regions away from cloud-free coastlines where the mosaic geometric correction
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accuracy is known to be poor. To reduce the impact of these problems only forest
pixels selected from within large homogeneous forest areas are examined.

The time lag between the sensing of the images making up each mosaic may
introduce re¯ ectance and brightness temperature variability caused by changes in
the position of the Sun and the time of day. The solar time di� erences in the selected
mosaics are found to be less than two hours and are assumed to have a negligible
impact upon Ts variability associated with warming or cooling over this period.
Changes in the solar zenith upon the amount of incident solar radiation per unit
surface area are assumed to cancel in the calculation of the NDVI (Holben and
Justice 1981). However, the relative proportions of remotely-sensed canopy,
understory, soil and shadow may change as function of the solar illumination and
the viewing geometry (Pech and Davis 1987) and may introduce complex re¯ ectance
and emittance variations across each mosaic. These variations may not be removed
completely by compositing, especially when only a small number of mosaics are
used. Further, because the data are atmospherically corrected, the variation of NDVI
and Ts with respect to view angle will be suppressed and therefore the probability
of selecting an o� -nadir pixel with a high NDVI or Ts value will be increased.

3. Compositing

The 68 AVHRR mosaics are processed independently into eight monthly MaN
and eight monthly MaT composites ( table 1). Only pixels ¯ agged as being cloud-
free are composited because pixels that are consistently cloudy within each monthly
period will not be removed. The NDVI was calculated as the di� erence between the
channel 2 and channel 1 re¯ ectances divided by their sum (Curran 1983 ). Apparent
Ts was calculated using a split-window technique modi® ed for land surfaces with
brightness temperatures derived from channels 4 and 5 and assuming a surface
emissivity in both channels of 0 9́6 (Price 1984 ). The split-window technique is
designed to reduce atmospheric water vapour attenuation in the thermal infrared
and corrects for localized atmospheric variations. The monthly MaN composites are
composed of a channel of maximum NDVI values and the original AVHRR image
channels selected on a pixel by pixel basis from the mosaics with the maximum
NDVI. Similarly, the monthly MaT composites are composed of a channel of
maximum Ts values and the original AVHRR image channels selected from the
mosaics with the maximum Ts .

Table 1. Daily European coverage AVHRR mosaics selected for compositing into eight
monthly composites.

Month Selected days of month of 1993 Total

March 3 8 13 15 20 21 26 30 8
April 1 7 10 15 16 22 25 27 28 29 30 11
May 5 10 11 12 17 23 6
June 10 12 20 26 27 28 30 7
July 1 4 5 7 12 16 23 24 29 31 10
August 1 2 7 8 14 15 16 17 23 25 26 31 12
September 1 4 9 16 19 23 25 7
October 4 5 18 19 21 27 29 7

Grand Total 68
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4. Forest and non-forest pixel location

Forest and non-forest pixels are located in the composite data using Geographical
Information System map overlay techniques. The pixels are selected from 82 con-
tiguous strata that characterize di� erent ecological/climatic regimes and forest cover
types found in the composite data. The pixel locations are de® ned within each
stratum by examination of a binary forest/non-forest map. The forest/non-forest map
is masked with a map of urban/non-urban regions to ensure that only non-urban
(i.e., vegetation and soil ) pixels are selected.

The contiguous forest strata are extracted from a vector database de® ned by a
recent study to regionalise Europe into major ecological/climatic regions and homo-
geneous forest strata (European Commission 1995). Six ecological/climatic regions,
12 transition regions and an additional conglomerate region of mountainous area
were de® ned at a scale of 1 : 2 5́ million using climatic, soil and topographic data.
The regions were sub-divided into 115 homogeneous forest strata by consideration
of six ranked forest variables, the two most important being forest species com-
position and stand density. The geographical area covered by the AVHRR composite
data contains 82 homogeneous forest strata and 13 ecological/climatic regions,
transition regions and conglomerate mountainous regions. The smallest forest stratum
has an area of 3 3́ by 103 km2 and the largest has an area of 2 9́ by 105 km2. The vector
data de® ning the forest strata are transformed into coregistration with the forest/non-
forest map to enable selection of forest and non-forest pixels within each stratum.

The binary forest/non-forest map was produced by unsupervised classi® cation of
72 uncomposited daily AVHRR-LAC images selected from 1989 to 1992 (Hausler
et al. 1993 ). Changes in the forest cover at the scale of AVHRR imagery between
this period and 1993 are assumed to be negligible. The overall binary forest/non-forest
map classi® cation accuracy is 82 5́ per cent (Hausler et al. 1993). The map is ® ltered
using a morphological ® lter (Serra 1986) to ensure that only large homogeneous
forest areas are selected. In this way it is hoped that errors of commission in the
forest/non-forest map and the impact of any compositing errors caused by poor
mosaic coregistration will be reduced. The forest/non-forest map is ® ltered in two
di� erent ways to produce separate forest and non-forest maps. The forest map is
produced by removing the two outermost forest boundary pixels and isolated forest
areas less than ® ve pixels wide. The non-forest map is produced by enlarging the
boundaries of the forest areas by two pixels and then labelling the remaining non-forest
pixels. These maps are masked with a co-registered 1 : 1 0́ million scale map of urban
regions extracted from the Digital Chart of the World database (ESRI 1993). To
reduce cartographic errors that may be present in this database the urban regions are
enlarged by bu� ering their boundaries by 2 km (approximately two AVHRR pixels).

Forest and non-forest pixels are sampled randomly in space without replacement
from the ® ltered forest and non-forest maps respectively. The sampling is performed
independently in each stratum from the non-urban regions. Where possible 500
forest and 500 non-forest pixels are sampled from each stratum. In some strata less
than 500 forest pixels are available because of sparse forest cover. The coordinates
of the selected pixels are transformed into the coordinate system of the AVHRR
composited data and are rounded to the nearest pixel.

5. Extraction of forest and non-forest NDVI and Ts data from monthly MaN and

MaT composites

Values of NDVI and Ts are extracted from each monthly MaN and MaT composite
at the selected forest and non-forest pixel locations. The NDVI values are extracted
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from the maximum NDVI channel of each MaN composite and are calculated from
the original image channels (channels 1 and 2) of the MaT composites. The Ts values
are extracted from the maximum Ts channel of each MaT composite and are calcu-
lated from the original image channels (channels 4 and 5) of the MaN composites.
In some strata less than 500 forest and 500 non-forest NDVI and Ts values are
available because of missing composite data associated with consistently cloudy
mosaic data. The total number of pairs of NDVI and Ts values extracted from each
monthly MaN and MaT composite are summarized in table 2.

6. Analyses

The statistical distributions of forest NDVI values extracted at the same locations
from the MaN and from the MaT composites are compared to characterize any
di� erences that may be introduced by the two compositing procedures. Similarly
forest Ts values extracted at the same locations from the MaN and the MaT
composites are compared. The comparisons are performed independently for each
month of composited data and for all eight months of data. The impact of any
observed di� erences are illustrated within the context of a European forest/non-forest
classi® cation that utilizes NDVI and Ts data. All the analyses are performed independ-
ently for each forest stratum to reduce the impact of variations associated with the
biophysical variables that were used to de® ne the strata (climate, soil, topography,
forest species, forest stand density). In all cases forest strata that contain less than
nine forest pixels are not examined. This is to reduce the likelihood of mixed pixels
which are assumed to be more likely in sparsely forested strata.

6.1. Comparison of forest ND VI and Ts data extracted f rom monthly MaN and Ma T
composites

Statistical tests are performed to characterize the form of any di� erences that
may occur between NDVI values and also between Ts values extracted at the same
forest locations from the MaN and MaT composites. The mean and the variance
of the values are compared using a two independent sample T -test and a two
independent sample di� erence of variance test respectively (DeGroot 1986). The
tests are performed independently for each month of composited data and for each
forest stratum.

One-tailed T -tests are used to establish if the mean forest NDVI is signi® cantly
greater when the NDVI data are extracted from the MaN or from the MaT

Table 2. The number of pairs of NDVI and Ts values extracted from the forest and non-forest
pixels in each monthly MaN and MaT composite.

Monthly Number of pairs extracted Number of pairs extracted
composite from the forest pixels from the non-forest pixels

March 23 909 33 032
April 26 518 36 917
May 23 398 34 498
June 27 731 38 437
July 27 539 36 967
August 29 007 39 112
September 26 024 35 597
October 24 654 32 553
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composites. Di� erence of variance tests are used to establish if the forest NDVI
variance is signi® cantly greater when the NDVI data are extracted from the MaN
or from the MaT composites. In this latter test an F-ratio is calculated by dividing
the larger sample variance by the smaller sample variance to ensure that the F-ratio
is always greater than or equal to one. The same tests are performed to compare
the mean and the variance of forest Ts data extracted from the MaN and MaT
composites.

6.2. Average temporal separability of forest ND VI and Ts data extracted f rom
di� erent combinations of MaN and Ma T composites

Multi-temporal NDVI and Ts values have been shown for a given biome type to
exhibit a seasonal trajectory related to changes in the temperature regime and the
leaf cover (Lambin and Ehrlich 1996, Nemani and Running 1997). If the statistical
distribution of forest NDVI and Ts values are sensitive to the compositing method
it follows that the seasonal trajectory of the NDVI and Ts values may also be
sensitive. This is investigated by examination of the average temporal separability
between eight months of forest NDVI and Ts values extracted from di� erent
combinations of MaN and MaT composites.

Separability measures are used conventionally to describe the separation between
the means and the distributions of two classes of data in a single index (Thomas
et al. 1987). The Bhattacharyya distance (Fukunaga 1990) is used to measure
separability as it does not require the data to be normalized, removing the require-
ment to make unveri® able assumptions concerning the relative importance of NDVI
and Ts . The Bhattacharyya distance is known to be appropriate to separability
problems where the distributions of the data are broad and is generally held to
give similar results to other separability measures (Thomas et al. 1987 ). The
Bhattacharyya distance is bounded between values of 0 ( low separability) and 2
(high separability) and is monotonically related to classi® cation accuracy when
probability distribution class models (e.g., maximum likelihood ) are used. In these
cases a Bhattacharyya distance of 2 0́ implies classi® cation of pixel data into one of
two classes with a 100 per cent classi® cation accuracy.

Pairwise separabilities are computed between the eight months of forest NDVI
and Ts data using the Bhattacharyya distance measure. For each month of NDVI
and Ts data an average monthly separability is calculated as the mean of the seven
pairwise separabilities between that month and the other seven months of data.
Eight average monthly separabilities are calculated and their mean is taken to give
a grand monthly average separability that is representative of the separability
between all eight months of forest NDVI and Ts data. Higher grand monthly average
separabilities will be found when the NDVI and Ts data have reduced variability
within each month and increased separation between months. This procedure is
repeated independently for each forest stratum and for the four possible ways that
NDVI and Ts data can be extracted from MaN and MaT composites. These are:
both NDVI and Ts extracted from MaN composites (combination 1), both NDVI
and Ts values extracted from MaT composites (combination 2), NDVI values
extracted from MaT composites and Ts values extracted from MaN composites
(combination 3), and NDVI values extracted from MaN composites and Ts values
extracted from MaT composites (combination 4). The combination that produces
the highest grand monthly average separability can be inferred to be the most
suitable for examination of the forest seasonal NDVI and Ts trajectory.
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6.3. Forest/non-forest classi ® cation
The impact of using di� erent combinations of MaN and MaT composites are

illustrated within the context of a European forest/non-forest classi® cation that uses
NDVI and Ts data. Recently it has been suggested that the addition of Ts can
discriminate regional land cover classes more e� ectively than NDVI alone (Running
et al. 1994). This has been demonstrated using AVHRR data of the African continent
(Ehrlich and Lambin 1996 ), of the conterminous U.S. (Nemani and Running 1997),
and over Europe using the data described in this paper (Roy et al., forthcoming).
The biophysical justi® cation for such a combination has been investigated in some
detail by Lambin and Ehrlich (1996). Rather than produce many forest/non-forest
classi® cations, the statistical separability between forest and non-forest NDVI and
Ts data are calculated for each forest stratum using the Bhattacharyya distance.
The four possible ways that NDVI and Ts data can be extracted from di� erent
combinations of MaN and MaT composites are examined. The combination of MaN
and/or MaT composite data that produces the highest separability can be inferred
to give the highest forest/non-forest classi® cation accuracy.

7. Results

7.1. Comparison of forest ND VI and Ts data extracted f rom monthly MaN and Ma T
composites

Figure 1 illustrates the mean and the standard deviation of NDVI and Ts data
extracted from the MaN and from the MaT monthly composites. The data are
extracted from the same 500 forest pixels in a forest stratum lying in Les Landes
region of S.W. France. This region contains dense stands of intensively managed
Pinus Pinaster. Figure 1 (a) illustrates the NDVI summary statistics and ® gure 1 (b)
illustrates the Ts summary statistics. Seasonal changes in the forest re¯ ectance and
thermal properties give an increase in NDVI and Ts towards the summer followed
by decreasing values in the autumn months. The mean NDVI values are consistently
higher and the standard deviation of the NDVI values are generally lower for the
data extracted from the MaN rather than from the MaT composites ( ® gure 1 (a) ).
Conversely, the mean Ts values are generally higher and the standard deviation of

(a) (b)

Figure 1. Mean and standard deviation (s) of NDVI and Ts forest pixel values extracted
from monthly MaN and MaT composites. Figure 1 (a) NDVI summary statistics.
Figure 1 (b) Ts summary statistics. The data are extracted from the same 500 forest
pixels in a forest stratum lying in Les Landes region of south-west France.
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the Ts values generally lower for the data extracted from the MaT rather than from
the MaN composites ( ® gure 1 (b) ). These di� erences are most evident during
the summer months. In July, the mean NDVI is approximately 0 1́ higher when the
NDVI data are extracted from the MaN rather than from the MaT composites. The
mean Ts in July is approximately 5 ß C higher when the Ts data are extracted from
the MaT rather than from the MaN composites. These data are analysed to test the
signi® cance of these observed di� erences. Figure 2 illustrates the results of two
independent sample T -tests performed on a monthly basis between the NDVI data
extracted from the MaN and from the MaT composites ( ® gure 2 (a) ) and between
the Ts data extracted from the MaN and from the MaT composites ( ® gure 2 (b)) .
Absolute values of the T -ratios are plotted with 90, 95 and 99 per cent con® dence
levels ( for a one-tailed test) superimposed to aid interpretation. T -ratios on or above
a con® dence level indicate a signi® cant di� erence at that con® dence level. Figure 2
shows that the type of composite (MaN or MaT) signi® cantly in¯ uences NDVI and
Ts in all months except March, April and May. The temporal dependency of the
di� erences observed in ® gure 1 are seen in the increasing T -ratio values in the
summer months.

Tests of the di� erences between the NDVI data and between the Ts data extracted
from the monthly MaN and MaT composites are performed for each forest stratum.
The test results are inferred at the 95 per cent con® dence level and are summarized
in tables 3 and 4 for the di� erence of means and the di� erence of variance tests
respectively. Only the percentage of forest strata that exhibit a signi® cant di� erence
are summarized because of the large number of tests performed. Tables 3 and 4 show
that the NDVI data and the Ts data are signi® cantly di� erent when they are extracted
from the MaN and the MaT composites for the majority of the forest strata. The
di� erences are similar to those observed in ® gure 1, that is NDVI data extracted
from the MaN composites have higher mean values and generally lower variances
than NDVI data extracted from the MaT composites, whilst Ts data extracted from
the MaT composites have higher mean values and generally lower variances than
Ts data extracted from the MaN composites. The temporal dependency of the

(a) (b)

Figure 2. Monthly two independent sample T -test results performed between forest
NDVI data and between forest Ts data extracted from MaN and MaT composites.
(a) T -ratios for NDVI data extracted from the MaN and from the MaT composites.
(b) T -ratios for Ts data extracted from the MaN and from the MaT composites. The
data are extracted from the same 500 forest pixels in a forest stratum lying in Les
Landes region of south-west France.



Maximum ND VI and the maximum Ts compositing 2393

Table 3. Percentage of European forest strata with signi® cantly higher mean NDVI values
and signi® cantly higher mean Ts values when the NDVI data are extracted from
maximum NDVI (MaN) and maximum Ts (MaT) monthly composites and when the
Ts data are extracted from MaN and MaT monthly composites. Signi® cance tests for
each stratum are computed by comparison of between 9± 500 forest pixel values using
a two independent sample T -test. Test results are inferred at the 95 0́ per cent con® dence
level for a one-tailed test. Percentages are quoted to the nearest decimal.

% of forest strata with % of forest strata with
signi® cantly higher mean signi® cantly higher mean

Number of
Monthly

NDVI values when NDVI Ts values when Ts

forest strata
composite

extracted from: extracted from:
testedMaN MaT MaN MaT

March 71 0 0 73 72
April 87 0 0 80 77
May 64 0 0 54 77
June 88 0 0 88 76
July 89 0 0 88 76
August 96 0 0 97 77
September 88 0 0 83 76
October 73 0 0 74 77

Table 4. Percentage of European forest strata with signi® cantly higher NDVI variances and
signi® cantly higher Ts variances when the NDVI data are extracted from maximum
NDVI (MaN) and maximum Ts (MaT) monthly composites and when the Ts data are
extracted from MaN and MaT monthly composites. Signi® cance tests for each stratum
are computed by comparison of between 9± 500 forest pixel values using a di� erence
of variance test for two independent samples. Test results are inferred at the 95 0́ per
cent con® dence level. Percentages are quoted to the nearest decimal.

% of forest strate with % of forest strata with
Number of

Monthly
signi® cantly higher NDVI signi® cantly higher Ts

forest strata
composite

variances extracted from: variances extracted from:
testedMaN MaT MaN MaT

March 11 42 51 4 72
April 0 44 45 5 77
May 3 35 21 8 77
June 1 66 42 13 76
July 0 79 51 16 76
August 0 87 52 18 77
September 5 65 38 18 76
October 9 30 26 22 77

di� erences are evident. The percentage of strata with signi® cantly higher mean NDVI
values extracted from the MaN rather than from the MaT composites varies from
64 per cent (May) to 96 per cent (August) and the percentage of strata with signi-
® cantly higher mean Ts values extracted from the MaT rather than from the MaN
composites varies from 54 per cent (May) to 97 per cent (August). A similar, though
less strong, temporal pattern is observed for the percentage of strata with signi® cantly
di� erent NDVI and Ts variances.
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7.2. Average temporal separability of forest ND VI and Ts data extracted f rom
di� erent combinations of MaN and Ma T composites

Figure 3 illustrates Ts and NDVI data extracted from the same forest pixel
locations from a forest stratum lying along the Mediterranean coastline in the
Provence-Languedoc-Roussillon region of France. In each monthly composite a
maximum of only 60 forest pixels could be extracted because of the sparseness of
the forest cover which is characterized by thin-broken stands of mixed forest species.
For reasons of clarity a sub-set of 24 pixels selected from the interiors of the largest
forest regions are shown. Figure 3 illustrates the four possible ways that NDVI and
Ts data can be extracted from di� erent combinations of MaN and MaT composites.
In each of these ® gures the monthly data form distinct clusters that exhibit a seasonal
trajectory. The impact of extracting NDVI and Ts data from the di� erent com-
binations of composited data are clearly evident in ® gure 3. Generally, NDVI data

(a)

(c)

(b)

(d)

Figure 3. Ts and NDVI data extracted from the same 24 forest pixels from a forest stratum
lying along the Mediterranean coastline in the Provence-Languedoc-Roussillon region
of France. The four possible ways that NDVI and Ts data can be extracted from
di� erent combinations of MaN and MaT composites are illustrated. (a) NDVI and Ts

values extracted from only the MaN composites. (b) NDVI and Ts values extracted
from only the MaT composites. (c) NDVI values extracted from the MaT composites
and Ts values extracted from the MaN composites. (d ) NDVI values extracted from
the MaN composites and Ts values extracted from the MaT composites.
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extracted from the MaN composites appear to be more compactly clustered along
the NDVI axis and higher valued than NDVI data extracted from the MaT com-
posites. Ts data extracted from the MaT composites appear more compact in the Ts

axis and higher valued than Ts data extracted from the MaN data.
The grand monthly average separabilities of the monthly NDVI and Ts data are

calculated for each forest stratum and for each of the four combinations of composite
data. Separabilities are only calculated for strata that contain nine or more of the
same forest pixels in every monthly composite. In this way a total of 72 forest strata
are examined. Summary statistics of the grand monthly average separabilities com-
puted over the 72 strata and for the four combinations of composite data are shown
in table 5. Examination of this table reveals a very clear pattern which supports the
results described in § 7.1. NDVI and Ts data extracted from the MaN and MaT

Table 5. Summary statistics of the grand monthly average separabilities computed over 72
forest strata. The grand monthly average separabilities are computed for each forest
stratum from eight monthly clusters of NDVI and Ts data extracted from between
9 ± 500 forest pixels. The NDVI and Ts data are extracted from di� erent combinations
of composite data: Combination (1 ) NDVI and Ts extracted from MaN composites,
Combination (2) NDVI and Ts extracted from MaT composites, Combination (3)
NDVI extracted from MaT and Ts extracted from MaN composites, Combination (4)
NDVI extracted from MaN and Ts extracted from MaT composites. Separabilities are
computed using the Bhattacharyya distance measure. Statistics are quoted to three
decimal places.

Minimum Maximum Mean Standard deviation

Combination 1 0 8́81 1 8́27 1 2́83 0 2́05
Combination 2 0 7́94 1 7́67 1 2́97 0 2́11
Combination 3 0 6́89 1 7́05 1 1́23 0 2́35
Combination 4 0 8́99 1 8́69 1 3́72 0 1́98

Table 6. Mean and standard deviation (s) of the forest/non-forest separabilities computed
over all the forest strata for each month of composite data. Separabilities are computed
for each forest stratum using NDVI and Ts extracted from between 9± 500 forest and
9 ± 500 non-forest pixels. These data are extracted from di� erent combinations of
composite data: Combination (1 ) NDVI and Ts extracted from MaN composites,
Combination (2) NDVI and Ts extracted from MaT composites, Combination (3)
NDVI extracted from MaT and Ts extracted from MaN composites, Combination (4 )
NDVI extracted from MaN and Ts extracted from MaT composites. Separabilities are
computed using the Bhattacharyya distance measure. Statistics are quoted to three
decimal places.

Combination 1 Combination 2 Combination 3 Combination 4 Number
of forest

Month Mean s Mean s Mean s Mean s strata

March 0 3́41 0 2́32 0 4́21 0 2́43 0 3́22 0 2́21 0 4́35 0 2́51 72
April 0 4́07 0 2́70 0 4́42 0 2́98 0 3́82 0 2́57 0 4́75 0 3́17 77
May 0 4́39 0 2́74 0 4́35 0 2́81 0 4́13 0 2́60 0 4́58 0 2́97 77
June 0 5́06 0 3́31 0 5́12 0 3́38 0 4́59 0 3́22 0 5́73 0 3́57 76
July 0 6́00 0 3́92 0 5́05 0 3́35 0 4́62 0 3́26 0 6́52 0 3́94 76
August 0 6́21 0 3́74 0 5́17 0 3́39 0 4́66 0 3́33 0 6́85 0 3́77 77
September 0 5́75 0 3́83 0 5́25 0 3́31 0 4́96 0 3́20 0 6́38 0 3́97 76
October 0 4́05 0 3́06 0 3́64 0 2́93 0 3́68 0 2́85 0 4́17 0 3́13 77
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composites respectively (combination 4) have the highest grand monthly average
separabilities over all 72 strata (highest minimum, maximum, mean and lower
standard deviation grand monthly average separabilities). Conversely, NDVI and Ts

data extracted from the MaT and MaN composites respectively (combination 3)
have the lowest grand monthly average separabilities ( lowest minimum, maximum,
mean and highest standard deviation grand monthly average separabilities). NDVI
and Ts data extracted from only the MaN and from only the MaT composites
(combinations 1 and 2 respectively) have separability results of intermediate and
similar value.

7.3. Forest/non-forest classi ® cation
Separabilities are calculated between the forest and non-forest NDVI and Ts data

selected from each forest stratum for each of the four possible combinations of MaN
and MaT composites. Table 6 summarizes the mean and the standard deviation of
the separabilities computed over all the strata for each month of composite data.
The separabilities are quite low ( less than 1 0́ ) and imply that the monthly composite
data would be classi® ed into forest and non-forest classes with a low degree of
accuracy. This is expected however as only a multi-temporal classi® cation will
properly capture seasonal variations. Further, the non-forest class encompasses all
non-forest vegetation and soil cover types and will therefore be characterized by a
very broad distribution of NDVI and Ts values. Also, the non-forest pixel values are
not selected from areas of homogeneous land-cover where compositing errors caused
by poor mosaic co-registration are likely to be less evident.

The separabilities summarised in table 6 illustrate the sensitivity of the potential
forest/non-forest classi® cation accuracy to the particular combination of MaN and/or
MaT composite data and to the month of composite data that is used. For all the
given combinations, the separabilities are highest in the summer months. NDVI and
Ts data extracted from the MaN and MaT composites respectively (combination 4)
have the highest mean and standard deviation separabilities for every month of

Table 7. Percentage of forest strata that have lower forest/non-forest separabilities when
NDVI and Ts data are extracted from di� erent combinations of composite data
compared to those computed using data extracted from Combination 4. The di� erent
combinations of composite data: Combination (1) NDVI and Ts extracted from
MaN composites, Combination (2 ) NDVI and Ts extracted from MaT com-
posites, Combination (3) NDVI extracted from MaT and Ts extracted from MaN
composites, Combination (4) NDVI extracted from MaN and Ts extracted from MaT
composites. Separabilities are computed using the Bhattacharyya distance measure.
Separabilities are computed for each forest stratum using NDVI and Ts extracted from
between 9± 500 forest and 9± 500 non-forest pixels. Percentages are quoted to the
nearest decimal.

Month Combination 1 Combination 2 Combination 3 Number of forest strata

March 78 60 76 72
April 69 73 74 77
May 65 67 77 77
June 71 80 79 76
July 71 83 87 76
August 81 83 97 77
September 72 79 83 76
October 56 71 71 77
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composite data. Conversely, NDVI and Ts data extracted from the MaT and MaN
composites respectively (combination 3) have the lowest mean and standard deviation
separabilities for almost every month. NDVI and Ts data extracted from only the
MaN and from only the MaT composites (combinations 1 and 2 respectively)
have intermediate and similar separability statistics. The consistently high mean
separabilities found with combination 4 are o� set by their high variability. However,
the majority of the forest strata exhibit higher forest/non-forest separabilities for
combination 4 than for any of the other combinations. This is shown in table 7
which summarizes the percentage of forest strata that have lower forest/non-forest
separabilities for the ® rst three combinations of composite data compared to
combination 4. These results imply that a European forest/non-forest classi® cation
should use NDVI data extracted from MaN composites and Ts data extracted from
MaT composites.

8. Conclusions

The impact of the maximum Normalized Di� erence Vegetation Index (NDVI)
and the maximum surface temperature (Ts ) compositing procedures (MaN and MaT
respectively) upon retrieved NDVI and Ts values extracted from cloud-screened
European AVHRR LAC data have been investigated. The statistical distributions of
forest NDVI and Ts values have been analysed with respect to contiguous strata
that characterize di� erent ecological/climatic regions and forest types within Europe.
The MaN and MaT compositing procedures have been shown to in¯ uence signi-
® cantly the distributions of the NDVI and Ts values for the majority of the strata.
NDVI values are observed to be higher and generally less variable when they are
extracted from MaN rather than from MaT composites and Ts values are observed
to be higher and generally less variable when they are extracted from MaT rather
than from MaN composites. Further work is required to establish if similar results
are found for non-forest cover types and in ecological regions with di� erent
climatic regimes outside of Europe. These ® ndings have been illustrated within the
context of a European forest/non-forest classi® cation that uses NDVI and Ts data.
Examination of forest/non-forest separabilities indicate that the potential classi-
® cation accuracies are sensitive to the combination of MaN and/or MaT composite
data that is used. In order to maximise the separability between forest and non-
forest classes, and therefore to ensure higher potential forest/non-forest classi® cation
accuracies, the results indicate that NDVI data should be extracted from MaN
composites and that Ts data should be extracted from MaT composites.

The ® ndings of this investigation indicate that inappropriate selection of a
compositing procedure may have a signi® cant impact upon the subsequent appli-
cation of NDVI and/or Ts data. They imply that caution must be applied in the
quantitative analysis of Ts data extracted from MaN composites and in the quanti-
tative analysis of NDVI data extracted from MaT composites. However, the
recommendations are formulated only by examination of NDVI and Ts values
extracted from cloud-screened MaN and MaT composites. The observed variations
in the NDVI and Ts values may also have been in¯ uenced by other factors that
were not investigated. These include inadequacies in the cloud screening algorithm,
di� erent biases in the atmospheric correction of the re¯ ected and emitted wavelengths
where the NDVI and Ts are measured respectively, and di� erent bidirectional e� ects
at the re¯ ected and emitted wavelengths. The results of this investigation should be
con® rmed by more theoretically based research in these respects.
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The ® ndings of this investigation may be particularly relevant to those appli-
cations that utilise both NDVI and Ts data. For example, NDVI and Ts have been
used for studies of soil moisture, evapotranspiration and surface energy ¯ uxes
(Goward and Hope 1989, Carlson et al. 1990, Nemani et al. 1993), for land cover
mapping (Ehrlich and Lambin 1996, Nemani and Running 1997), and for change
detection (Lambin and Strahler 1994, Lambin and Ehrlich 1996). However, the
extraction of NDVI and Ts data from independently composited images has certain
disadvantages. NDVI and Ts values extracted at the same pixel location from MaN
and MaT composites may originate from di� erent images sensed at di� erent times
within the compositing period. This may introduce problems of data interpretation
particularly if the time scales of variation of NDVI and Ts are signi® cantly di� erent.
Variations in the slope of Ts and NDVI have been interpreted biophysically in terms
of regional surface resistance to evapotranspiration and as a method for capturing
information related to the fractional green vegetation cover (Nemani et al. 1993 ).
Variations in NDVI are driven largely by seasonal changes in the rates of vegetation
activity while variations in Ts in semi-arid or dry subhumid ecosystems, where the
fractional green vegetation cover is low, are driven mainly by rainfall events (Lambin
and Strahler 1994 ). It may therefore be more meaningful to use di� erent compositing
periods to produce the MaN and MaT composites. Further research is required to
investigate the interrelationship between the compositing period and the rate of
change of the de® ned measure used to composite the data.
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